Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.375
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2318425121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557182

RESUMO

Corrugated packaging for express grew by 90 times to 16.5 Mt y-1 in China, where 81% of recent global express delivery growth occurred. However, the environmental impacts of production, usage, disposal, and recycling of corrugated boxes under the entire supply chain remain unclear. Here, we estimate the magnitudes, drivers, and mitigation potentials of cradle-to-grave life-cycle carbon footprint (CF) and three colors of water footprints (WFs) for corrugated cardboard packaging in China. Over 2007 to 2021, CF, blue and gray WFs per unit package decreased by 45%, 60%, and 84%, respectively, while green WF increased by 23% with growing imports of virgin pulp and China's waste ban. National total CF and WFs were 21 to 102 folded with the scale effects. Only a combination of the supply chain reconstruction, lighter single-piece packaging, and increased recycling rate can possibly reduce the environmental footprints by 24 to 44% by 2035.


Assuntos
Carbono , Água , Pegada de Carbono , Reciclagem , China
2.
Environ Sci Technol ; 58(15): 6457-6474, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38568682

RESUMO

The circular economy (CE) aims to decouple the growth of the economy from the consumption of finite resources through strategies, such as eliminating waste, circulating materials in use, and regenerating natural systems. Due to the rapid development of data science (DS), promising progress has been made in the transition toward CE in the past decade. DS offers various methods to achieve accurate predictions, accelerate product sustainable design, prolong asset life, optimize the infrastructure needed to circulate materials, and provide evidence-based insights. Despite the exciting scientific advances in this field, there still lacks a comprehensive review on this topic to summarize past achievements, synthesize knowledge gained, and navigate future research directions. In this paper, we try to summarize how DS accelerated the transition to CE. We conducted a critical review of where and how DS has helped the CE transition with a focus on four areas including (1) characterizing socioeconomic metabolism, (2) reducing unnecessary waste generation by enhancing material efficiency and optimizing product design, (3) extending product lifetime through repair, and (4) facilitating waste reuse and recycling. We also introduced the limitations and challenges in the current applications and discussed opportunities to provide a clear roadmap for future research in this field.


Assuntos
Ciência de Dados , Gerenciamento de Resíduos , Reciclagem
3.
Microb Biotechnol ; 17(4): e14459, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588222

RESUMO

Plastics pollution has become one of the greatest concerns of the 21st century. To date, around 10 billion tons of plastics have been produced almost exclusively from non-renewable sources, and of these, <10% have been recycled. The majority of discarded plastic waste (>70%) is accumulating in landfills or the environment, causing severe impacts to natural ecosystems and human health. Considering how plastics are present in every aspect of our daily lives, it is evident that a transition towards a Circular Economy of plastics is essential to achieve several of the Sustainable Development Goals. In this editorial, we highlight how microbial biotechnology can contribute to this shift, with a special focus on the biological recycling of conventional plastics and the upcycling of plastic-waste feedstocks into new value-added products. Although important hurdles will need to be overcome in this endeavour, recent success stories highlight how interdisciplinary approaches can bring us closer to a bio-based economy for the sustainable management of plastics.


Assuntos
Plásticos , Desenvolvimento Sustentável , Humanos , Ecossistema , Reciclagem , Poluição Ambiental
4.
Waste Manag ; 180: 115-124, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564912

RESUMO

In this study, the waste generation at the educational institutes chosen from four different levels (kindergartens, primary, secondary and high schools) in Istanbul was measured on-site and the contents of the waste thrown into the recycling bins were determined to specify capture rates. Separation and weighing processes were performed at 16 spots in high schools, 12 spots in secondary schools, 7 spots in primary schools and 7 spots in kindergartens. A survey was conducted to determine the students' awareness of recycling in these schools. It was revealed that the wastes produced from educational institutes are organics (36.4 %), paper (24 %), plastics (14.4 %), glass (8.1 %), metals (4.8 %) and miscellaneous (12.3 %). The survey results indicate that 93 % of the participants think recycling is important, 71 % of them throw their waste into suitable waste bins and 59 % of them know the location of the recycling bins. At the primary school level, a very high rate of paper waste (92.3 %) was reported in plastic bins while plastic waste collected in these bins remained only 5.7 %. It was also seen that glass waste captured in glass bins and metal waste in metal bins remain very low rates (20.9 % and 29.2 %, respectively) at the secondary school level. At the high school level, it was determined that the most commonly captured wastes in glass, plastics and paper bins are glass (47.5 %), plastic (43.2 %) and paper (32.5 %), respectively. Correlation analyses indicated a high positive correlation (p < 0.05) between particular types of waste.


Assuntos
Plásticos , Gerenciamento de Resíduos , Humanos , Reciclagem , Estudantes , Instituições Acadêmicas
5.
Waste Manag ; 180: 96-105, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564915

RESUMO

The growing electric vehicle industry has increased the demand for raw materials used in lithium-ion batteries (LIBs), raising concerns about material availability. Froth flotation has gained attention as a LIB recycling method, allowing the recovery of low value materials while preserving the chemical integrity of electrode materials. Furthermore, as new battery chemistries such as lithium titanate (LTO) are introduced into the market, strategies to treat mixed battery streams are needed. In this work, laboratory-scale flotation separation experiments were conducted on two model black mass samples: i) a mixture containing a single cathode (i.e., NMC811) and two anode species (i.e., LTO and graphite), simulating a mixed feedstock prior to hydrometallurgical treatment; and ii) a graphite-TiO2 mixture to reflect the expected products after leaching. The results indicate that graphite can be recovered with > 98 % grade from NMC811-LTO-graphite mixtures. Additionally, it was found that flotation kinetics are dependent on the electrode particle species present in the suspension. In contrast, the flotation of graphite from TiO2 resulted in a low grade product (<96 %) attributed to the significant entrainment of ultrafine TiO2 particles. These results suggest that flotation of graphite should be preferably carried out before hydrometallurgical treatment of black mass.


Assuntos
Grafite , Lítio , Reciclagem/métodos , Fontes de Energia Elétrica , Íons
6.
J Environ Manage ; 357: 120774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38569265

RESUMO

The booming electric vehicle market has led to an increasing number of end-of-life power batteries. In order to reduce environmental pollution and promote the realization of circular economy, how to fully and effectively recycle the end-of-life power batteries has become an urgent challenge to be solved today. The recycling & remanufacturing center is an extremely important and key facility in the recycling process of used batteries, which ensures that the recycled batteries can be handled in a standardized manner under the conditions of professional facilities. In reality, different adjustment options for existing recycling & remanufacturing centers have a huge impact on the planning of new sites. This paper proposes a mixed-integer linear programming model for the siting problem of battery recycling & remanufacturing centers considering site location-adjustment. The model allows for demolition, renewal, and new construction options in planning for recycling & remanufacturing centers. By adjusting existing sites, this paper provides an efficient allocation of resources under the condition of meeting the demand for recycling of used batteries. Next, under the new model proposed in this paper, the uncertainty of the quantity and capacity of recycled used batteries is considered. By establishing different capacity conditions of batteries under multiple scenarios, a robust model was developed to determine the number and location of recycling & remanufacturing centers, which promotes sustainable development, reduces environmental pollution and effectively copes with the risk of the future quantity of used batteries exceeding expectations. In the final results of the case analysis, our proposed model considering the existing sites adjustment reduces the cost by 3.14% compared to the traditional model, and the average site utilization rate is 15.38% higher than the traditional model. The results show that the model has an effective effect in reducing costs, allocating resources, and improving efficiency, which could provide important support for decision-making in the recycling of used power batteries.


Assuntos
Fontes de Energia Elétrica , Reciclagem , Incerteza , Reciclagem/métodos , Poluição Ambiental , Eletricidade
7.
Waste Manag ; 180: 149-161, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569437

RESUMO

Gold tailings are characterized by low-grade, complex composition, fine embedded particle size, environmental pollution, and large land occupation. This paper describes the mineralogical properties of gold tailings, including chemical composition, phase composition, particle size distribution, and microstructure; summarizes the recycling and utilization of components such as mica, feldspar, and valuable metals in gold tailings; reviews harmless treatment measures for harmful elements in gold tailings; and adumbrated the research progress of gold tailings in the application fields of building materials, ceramics, and glass materials. Based on these discussions, a new technology roadmap that combines multistage magnetic separation and cemented filling is proposed for the clean utilization of all components of gold tailings.


Assuntos
Poluição Ambiental , Ouro , Cerâmica , Reciclagem , Tamanho da Partícula
8.
PLoS One ; 19(4): e0302176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635601

RESUMO

As one of the key materials used in the civil engineering industry, concrete has a global annual consumption of approximately 10 billion tons. Cement and fine aggregate are the main raw materials of concrete, and their production causes certain harm to the environment. As one of the countries with the largest production of industrial solid waste, China needs to handle solid waste properly. Researchers have proposed to use them as raw materials for concrete. In this paper, the effects of different lithium slag (LS) contents (0%, 10%, 20%, 40%) and different substitution rates of recycled fine aggregates (RFA) (0%, 10%, 20%, 30%) on the axial compressive strength and stress-strain curve of concrete are discussed. The results show that the axial compressive strength, elastic modulus, and peak strain of concrete can increase first and then decrease when LS is added, and the optimal is reached when the LS content is 20%. With the increase of the substitution rate of RFA, the axial compressive strength and elastic modulus of concrete decrease, but the peak strain increases. The appropriate amount of LS can make up for the mechanical defects caused by the addition of RFA to concrete. Based on the test data, the stress-strain curve relationship of lithium slag recycled fine aggregate concrete is proposed, which has a high degree of agreement compared with the test results, which can provide a reference for practical engineering applications. In this study, LS and RFA are innovatively applied to concrete, which provides a new way for the harmless utilization of solid waste and is of great significance for the control of environmental pollution and resource reuse.


Assuntos
Gerenciamento de Resíduos , Gerenciamento de Resíduos/métodos , Lítio , Resíduos Sólidos , Materiais de Construção , Reciclagem/métodos , Resíduos Industriais/análise
9.
PLoS One ; 19(4): e0294179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630697

RESUMO

This study investigated the suitability of recycled asphalt pavement and polyethylene wastes as coarse aggregate in asphaltic concrete by evaluating the impact of the use of polyethylene polymer wastes and recycled asphalt pavement composite as aggregates on the physical and mechanical properties of the asphaltic concrete. The physical characteristics of the aggregate and bitumen were determined using relevant parametric tests. Recycled asphalt pavement was used to make asphaltic concrete samples using LDPE at 5%, 10%, 15%, RAP at 5% and HDPE at 5%, 10%, 15%, and a mixture of LDPE + HDPE at 5+5%, 7.5+7.5% and 10+10% RAP at 5% as additives. Marshall Stability test was conducted to assess the mechanical strength of the asphaltic concrete, and the results included information on the aggregate's stability, flow, density, voids filled with bitumen, voids filled with air, and voids in mineral aggregate. In addition, the surface and crystal structure of the aggregates was studied by carrying out a microscopic examination with a Scanning Electron Microscope (SEM) and X-Ray diffraction (XRD). The results obtained from this study demonstrated that RAP, HDPE & LDPE are viable conventional aggregate substitute for asphalt concrete production.


Assuntos
Materiais de Construção , Polietileno , Reciclagem/métodos , Hidrocarbonetos/química
10.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611724

RESUMO

In this study, oxidized single-walled carbon nanohorns (oxSWCNHs) were prepared using nitric acid oxidation and subsequently combined with 3'6-carboxyfluorescein through charge transfer to prepare fluorescent probes. These oxSWCNHs were used to quench fluorogen signals at short distances and dissociate ssDNA using cryonase enzymes. We established a method for rapidly detecting tetracycline (TC) in complex samples based on the amplification of cryonase enzyme signals. After optimizing the experimental conditions, our method showed a detection limit of 5.05 ng/mL, with good specificity. This method was used to determine the TC content in complex samples, yielding a recovery rate of 90.0-103.3%. This result validated the efficacy of our method in detecting TC content within complex samples.


Assuntos
Compostos Heterocíclicos , Tetraciclina , Antibacterianos , Reciclagem , Carbono , DNA de Cadeia Simples
11.
Waste Manag ; 178: 321-330, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430746

RESUMO

Recycling of post-consumer waste wood material is becoming an increasingly appealing alternative to disposal. However, its huge heterogeneity is calling for an assessment of the material characteristics in order to define the best recycling option and intended reuse. In fact, waste wood comes into a variety of uses/types of wood, along with several levels of contamination, and it can be divided into different categories based on its composition and quality grade. This study provides the measurement of more than a hundred waste wood samples and their characterisation using a hand-held NIR spectrophotometer. Three classification methods, i.e. K-nearest Neighbours (KNN), Principal Component Analysis - Linear Discriminant Analysis (PCA-LDA) and PCA-KNN, have been compared to develop models for the sorting of waste wood in quality categories according to the best-suited reuse. In addition, the classification performance has been investigated as a function of the number of the spectral measurements of the sample and as the average of the spectral measurements. The results showed that PCA-KNN performs better than the other classification methods, especially when the material is ground to 5 cm of particle size and the spectral measurements are averaged across replicates (classification accuracy: 90.9 %). NIR spectroscopy, coupled with chemometrics, turned out to be a promising tool for the real-time sorting of waste wood material, ensuring a more accurate and sustainable waste wood management. Obtaining real-time information about the quality and characteristics of waste wood material translates into a decision of the best recycling option, increasing its recycling potential.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Gerenciamento de Resíduos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Madeira , Reciclagem , Análise Discriminante , Resíduos
12.
Waste Manag ; 178: 362-370, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430750

RESUMO

Despite international efforts to foster the circular economy, plastic waste remains a major environmental problem. In the circular economy, the success of a waste management system depends, inter alia, on consumers properly sorting their plastic waste. Yet mis-sorting of plastic food packaging waste happens routinely. We sought to find out why and to outline the ways consumers prefer to receive information about waste sorting procedures. Tailoring information to consumer preferences can improve the effectiveness of waste management policy. Using the Motivation Opportunity Ability (MOA) framework to explain consumer behaviour, we conducted focus group discussions in two German cities. Our findings suggest that more accurate information and financial incentives best motivate consumers to sort waste correctly. Uncertainty and confusion over the packaging material are the most severe hindrances to correct sorting behaviour. The Internet and social media are preferred most for acquiring information on how to sort plastic food packaging correctly. Policymakers can use our results to adjust packaging and waste management regulations to help eliminate confusion among consumers and to facilitate their recycling intentions. Food industry practitioners and company decision makers can use our results to adjust their plastic packaging features to better match consumer preferences for easily recyclable waste.


Assuntos
Plásticos , Gerenciamento de Resíduos , Humanos , Embalagem de Alimentos , 60659 , Grupos Focais , Reciclagem , Embalagem de Produtos , Alemanha
13.
Waste Manag ; 178: 351-361, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430749

RESUMO

The traditional hydrometallurgy technology has been widely used to recover precious metals from electronic waste. However, such aqueous recycling systems often employ toxic/harsh chemicals, which may cause serious environmental problems. Herein, an efficient and environment-friendly method using a deep eutectic solvent (DES) mixed system of choline chloride-ethylene glycol-CuCl2·2H2O is developed for gold (Au) recovery from flexible printed circuit boards (FPCBs). The Au leaching and precipitation efficiency can reach approximately 100 % and 95.3 %, respectively, under optimized conditions. Kinetic results show that the Au leaching process follows a nucleation model, which is controlled by chemical surface reactions with an apparent activation energy of 80.29 kJ/mol. The present recycling system has a much higher selectivity for Au than for other base metals; the two-step recovery rate of Au can reach over 95 %, whereas those of copper and nickel are < 2 %. Hydrogen nuclear magnetic resonance spectroscopy (HNMR) and density functional theory (DFT) analyses confirm the formation of intermolecular hydrogen bonds in the DES mixed system, which increase the system melting and boiling points and facilitate the Au leaching process. The Au leaching system can be reused for several times, with the leaching efficiency remaining > 97 % after five cycles. Moreover, ethylene glycol (EG) and choline chloride (ChCl) act as aprotic solvents as well as coordinate with metals, decreasing the redox potential to shift the equilibrium to the leaching side. Overall, this research provides a theoretical and a practical basis for the recovery of metals from FPCBs.


Assuntos
Resíduo Eletrônico , Ouro , Ouro/química , Colina , Cobre/química , Reciclagem/métodos , Resíduo Eletrônico/análise , Etilenoglicóis
14.
Chemosphere ; 355: 141686, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513952

RESUMO

The oxygenation process of the catalyst surface, the incident-light harvesting capability, and facile recycling of utilized photocatalysts play key role in the outstanding photocatalytic performances. The typical existing photocatalysts in powder form have many drawbacks, such as difficult separation from the treated water, insufficient surface oxygenation, poor active surface area, low incident-light harvesting ability, and secondary pollution of the environment. A great number of scientific works introduced novel and fresh ideas related to designing floating photocatalytic systems by immobilizing highly active photocatalysts onto a floatable substrate. Thanks to direct contact with the illuminated light and oxygen molecules in the interface of water/air, the photocatalytic performance is maximized through production of more reactive species, employed in the photocatalytic reactions. Furthermore, facile recovering of the utilized photocatalysts for next processes avoids secondary pollution as well as diminishes the process's price. This review highlights the performance of developed floating photocatalysts for diverse applications. Furthermore, different floating substrates and possible mechanisms in floating photocatalysts are briefly mentioned. In addition, several emerging self-floating photocatalytic systems are taken attention and discussed. Specially, coupling photo-thermal and photocatalytic effects seems to be a good strategy for introducing a new class of floating photocatalyst to utilize the free, abundant, and green sunlight energy for the aims of water desalination and purification. Despite of a large number of attempts about the floating photocatalysts, there are still plenty of rooms for more in-depth research to be carried out for attaining the required characteristics of the large scale utilizations of these materials.


Assuntos
Poluição Ambiental , Oxigênio , Fenômenos Físicos , Reciclagem , Água
15.
Environ Sci Technol ; 58(13): 6019-6029, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38509821

RESUMO

Recovering ammonium from swine wastewater employing a gas-permeable membrane (GM) has potential but suffers from the limitations of unattractive mass transfer and poor-tolerance antifouling properties. Turbulence is an effective approach to enhancing the release of volatile ammonia from wastewater while relying on interfacial disturbance to interfere with contaminant adhesion. Herein, we design an innovative gas-permeable membrane coupled with bubble turbulence (BT-GM) that enhances mass transfer while mitigating membrane fouling. Bubbles act as turbulence carriers to accelerate the release and migration of ammonia from the liquid phase, increasing the ammonia concentration gradient at the membrane-liquid interface. In comparison, the ammonium mass transfer rate of the BT-GM process applied to real swine wastewater is 38% higher than that of conventional GM (12 h). Through a computational fluid dynamics simulation, the turbulence kinetic energy of BT-GM system is 3 orders of magnitude higher than that of GM, and the effective mass transfer area is nearly 3 times that of GM. Seven batches of tests confirmed that the BT-GM system exhibits remarkable antifouling ability, broadens its adaptability to complex water quality, and practically promotes the development of sustainable resource recycling.


Assuntos
Compostos de Amônio , Incrustação Biológica , Suínos , Animais , Amônia/análise , Águas Residuárias , Incrustação Biológica/prevenção & controle , Reciclagem
16.
Waste Manag ; 180: 9-22, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503033

RESUMO

Austria must recycle more packaging materials. Especially for plastic packaging waste, significant increases are necessary to reach the EU recycling targets for 2025 and 2030. In addition to improving separate collection and introducing a deposit system for specific fractions, the share of plastic packaging in mixed municipal solid waste (MSW) could be utilized. In Austria, about 1.8milliontonnes of mixed MSW are generated. This includes about 110,000 t/a of plastic packaging waste. Most of the mixed MSW (94 %) is sent directly or via residues from pre-treatment, such as mechanical-biological treatment or waste sorting, to waste incineration. While materials such as glass and metals can also be recovered from the bottom ash, combustible materials such as plastics must be recovered before incineration. This work aims to evaluate the recovery potential of plastic packaging waste in mixed MSW with automated waste sorting. For this purpose, two of the largest Austrian waste sorting plants, with a total annual throughput of about 280,000 t/a, were investigated. The investigation included regular sampling of selected output streams and sorting analysis. The results show that the theoretical recovery potential of plastic packaging from these two plants is 6,500 t/a on average. An extrapolation to Austria results in a potential of about 83,000 t/a. If losses due to further treatment, such as sorting and recycling, are considered, about 30,000 t/a of recyclate could be returned to plastic production. This would correspond to an increase in plastic packaging recycling rate from 25 % to 35 %.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Resíduos Sólidos , Eliminação de Resíduos/métodos , Áustria , Plásticos , Reciclagem/métodos , Embalagem de Produtos
17.
J Environ Manage ; 357: 120713, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38552520

RESUMO

With the continuous advancement of urban renewal, the application of recycled aggregates (RA) is a win-win measure to solve the treatment of construction waste and provide the required building materials. However, the existence of a large amount of old adhesive mortar (OAM) makes it difficult for RA to equivalently replace natural aggregates (NA) due to their higher water absorption and crushing index, as well as a lower apparent density. From the published literature on enhancing RA, the most mature and easiest method for construction is physical enhancement technology. Therefore, through a review of recent related researches, this article summarizes and compares the modification effects of mechanical grinding technology, traditional heating and grinding technology, and microwave heating technology on the physical properties of RA, including water absorption, apparent density, and crushing value. The related modification mechanisms were discussed. Additionally, the impacts of different physical enhancement technologies on the environment and economy effects are assessed from the perspectives of carbon emissions and cost required during processing. Based on multi-criteria analysis, microwave heating technology is more efficient and cleaner, which is the most recommended in the future.


Assuntos
Resíduos Industriais , Reciclagem , Resíduos Industriais/análise , Reciclagem/métodos , Materiais de Construção , Água , Desempenho Físico Funcional
18.
J Environ Manage ; 357: 120720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38554451

RESUMO

Construction and demolition waste, along with discarded PET plastic bottles, have evolved into a widespread global resource. However, their current disposal in landfills poses a significant environmental pollution challenge. This research is centered on evaluating the performance of cement mortar composed by larger PET particles in conjunction with sand, construction and demolition waste, and lightweight expanded polystyrene aggregates. The primary objective of this study is to formulate a blend suitable for non-structural elements that can be easily manufactured for social housing construction. This modified blend extends upon the original certified mixture employed at CEVE for brick production, which encompasses cement and 3 mm-long PET particles. The experimental analysis revealed that blend containing 8 mm-long PET particles, in combination with fine aggregates of construction and demolition waste, attained a required mechanical strength of 2 MPa, while preserving the bulk density and hydric properties of the initial PET bricks developed at CEVE in Argentina.


Assuntos
Materiais de Construção , Reciclagem , Resíduos Industriais , Instalações de Eliminação de Resíduos , Argentina
19.
J Environ Manage ; 355: 120507, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457895

RESUMO

The "asbestos problem" arises from the fact that asbestos is still abundant in many buildings and represents a hazard for human health. Current strategies adopted by law aiming at mitigating this hazard are far from being ideal. A smarter solution would be an energy sustainable detoxification treatment followed by recycling. If adopted, it would preserve the environment from pollution, natural resources from depletion and human health from hazard. Asbestos-cement slates were thermally deactivated through a sustainable process and reused in mortar for plaster applications. We found that the addition up to 7 wt% of the deactivated product does not affect significantly the water demand; does not affect thixotropy, stickiness and spreadability of the plastic mixture; slightly increases the strength of the mortar; does not compromise mechanical properties after aging. Considering the huge amount of traditional mortar employed worldwide, a rapid end of the "asbestos problem" is envisaged.


Assuntos
Amianto , Materiais de Construção , Humanos , Reciclagem , Poluição Ambiental , Recursos Naturais
20.
PLoS One ; 19(3): e0300707, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512927

RESUMO

The circular economy is a way of eliminating the shortage of raw materials that Europe is currently facing. However, it is necessary to explicitly identify the problems that prevent greater involvement in the CE. This article is focused on consumers and how they treat discarded or non-functional items. The aim was to fill the research gap, i.e. to compile a suitable CE model and define a methodology that would ensure the efficient disposal of non-functional or unsuitable items by consumers. An original methodology was drawn up to conduct the representative research, designed to lead to the practical application of the proposed CE model. The research explored how consumers treat non-functional or unsuitable items, the costs they incur in discarding, renovating, reusing, and recycling such items, and the alternative costs of unsorted municipal waste. After the data had been implemented into the model the circular economy was proven to have an economic benefit for the national economy in all groups. However, the economic disadvantage for consumers was also calculated, where the cost of involvement in the CE is higher than the cost of unsorted municipal waste. This means that people are motivated to play a part in the CE more by their own responsible approach to life, or social pressure from those around them. Based on this research it may be said that economic aspects are one reason that consumers tend to be reluctant to get more involved in the CE. Unless there is a significant rise in the cost of municipal waste that would motivate consumers to move towards the CE for financial reasons, in order to support the CE consumers need to be better stimulated, educated and informed as much as possible through the media.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Humanos , Resíduos Sólidos/análise , Comportamento do Consumidor , Reciclagem , Caquexia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...